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Abstract- The goal of image segmentation is to partition an image 
into regions that are internally homogeneous and heterogeneous with 
respect to other neighbouring regions. We build on the pyramid image 

segmentation work proposed by 131 and 191 by making a more efficient 

method by which children chose parents within the pyramid structure. 
Instead of considering only four immediate parents as in 131, in 191 each 

child node considers the neighbours of its candidate parent, and the 
candidate parents of its neighbouring nodes in the same level. In this 
paper, we also introduce the concept of a co-parent node for possible 

region merging at the end of each iteration. The new parents of the former 

children are co-parent candidates as if they are similar. The co-parent is 
chosen to be the one with the largest receptive field among candidate co­

parents. Each child then additionally considers one more candidate, the 

co-parent of the previous parent. Other steps in the algorithm, and its 
overall layout, were also improved. The new algorithm is tested on a set of 

images. Our algorithm is fast (produces segmentations within seconds), 

results in the correct segmentation of elongated and large regions, very 
simple compared to plethora of existing algorithms, and appears 

competitive in segmentation quality with the best publicly available 

implementations. The major improvement over 191 is that it produces 
visually appealing results at earlier levels of pyramid segmentation, and 

not only at the top one. 
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l. INTRODUCTION 

Image segmentation can be very useful in many computer vision 
systems. It decomposes an image into homogeneous regions, which 
hopefully belong to the same object in the scene. Segmentation can be 
done according to some criteria by [7]. It is rarely achieved 
comprehensively for any single application, and algorithms that do 
perform well in one application are not suited for others. 

Pyramid segmentation was proposed in [8, 10], and further 
elaborated on in [3]. Pyramids are hierarchical structures where each 
level is built by computing a set of local operations on the level below 
(with the original image being at base level or level 0 in the 
hierarchy). Level L consists of a matrix of points where each point 
contains some data and a link to at most one parent point in level L+ I. 
The value of a point at levels higher than the base level is derived 
from the values of all its children points at the level below. When this 
is applied to children points transitively down to the base level, the 
value at each point at a given level is decided by the set of its 
descendent pixels at the base level (its receptive field). Each point at 
level L also represents an image component and constructs the image 
segmentation at level L-I, consisting of pixels belonging to its 
receptive field (if nonempty). Thus each level has its predefined 
maximum number of components. However its minimum number of 
components is left open and depends on a concrete image. 

Image segmentation pyramids can be classified into regular and 
irregular types. Regular pyramids have a well-defined neighbourhood 
intra-level structure, where only natural neighbours in the mesh that 
defines a level of a pyramid are considered. Inter-level edges are the 
only relationships that can be changed to adapt the pyramid to the 
image layout. A constant reduction factor between levels is found in 
literature and pertains to regular pyramids [7]. Regular pyramids can 
suffer several problems [I, 7]: non-connectivity of the obtained 
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receptive field, shift variance, or incapability to segment elongated 
objects. 

To address the limitation of regular pyramids, irregular pyramids 
were proposed which vary in structure, increase the complexity and 
run time of the algorithms, and/or are dependant on prior knowledge 
of the image domain to be designed successfully. In the irregular 
pyramid framework, the relationships and reduction factors between 
levels are non-constant. Existing irregular pyramid based 
segmentation algorithms were surveyed in [7]. The described methods 
all appear very complex, have higher time complexities compared to 
regular pyramids and all consider the connectivity of the receptive 
field (base layer) as a design goal. 

In [9], the authors observe that the connectivity of the receptive 
field (region in segmentation) is not always a desirable characteristic. 
For instance, in forestry and certain medical applications, the same 
type of vegetation or biomass could be present in several parts of the 
image, and treating them as a single segment may in fact be preferred 
for further processing. The proposed segmentation algorithm, called 
LS (Link Shifting), allows for non-connectivity of the receptive fields. 
Common receptive fields are coloured with common colours when the 
segmentation results are displayed. 

The LS algorithm [9] is inspired by the regular pyramid linked 
approach (PLA) originally proposed by Burt et al. [3]. In the method 
proposed by [3], nodes from one level may alter their selection of 
parent at each iteration of the segmentation algorithm, which differs 
from previous pyramid structures. Starting from the base level (0), 
links between the current level L and level L+ I are decided. Each 
vertex at level L has four fixed candidate parents, and chooses the one 
which is the most similar from the higher level. The value of each 
parent is recalculated by averaging the values of its current children. 
Such iterations continue until the child-parent edges do not vary, or a 
certain number T of iterations is reached. The process then continues 
at the next higher level pair of levels. The main advantage of this 
method is that it does not need any threshold to compute the similarity 
between nodes at the same level. In the original method [3], each node 
must be linked to one parent node. Antonisse [I] introduced 'unforced 
linking' which allows the exclusion of some vertices from linking, and 
the presence of small components in the segmented image. Let 
include(u) be m times the standard deviation of a 3x3 neighbourhood 
around the node u (m is a parameter, whose value is 2 for 95% 
confidence and 3 for 99% confidence assuming a normal distribution 
of pixel intensities). This function is used to find the most similar 
parent q to node u. If u differs from q by at most include(u), u links to 
q. Otherwise, u fails to link to q and becomes the root of a new sub 
pyramid [I]. [9] changed this rule because 'unforced linking' of u and 
its parent was unnecessarily dependent on the neighbours of u in the 
existing rule from [I]. 

Antonisse [I] also proposed path fixing which defines some 
arbitrary path from the image(base) level to the top level to be fixed. 
This was indirectly applied here by the initial selection of random 
numbers for each pyramid vertex which were used for tie-breaking. 
Antonisse [I] also proposed randomized tie-breaking: when potential 
parent nodes have the same values, the choice of the parent is 



randomized. The tie-breaking rule has been completely redesigned in 
[9]. 

Burt et al [3] limit the choice of parent to 4 fixed nodes directly 
above the child. This approach has contributed to more successful 
segmentation, but due to the limited selection of parents, elongated 
and generally large segments that cover a significant portion of the 
image are not considered 'joined'. 

We strive to design an algorithm that would properly handle 
elongated objects, while not enforcing connectivity of the receptive 
field and preserving shift invariance (the stability when minor shifts 
occur). This algorithm should also have favourable time complexity 
and execution time (within seconds, depending on the size of the 
images), and overall simplicity, so that it can be easily understood, 
implemented, and used in practice. 

To achieve these goals, [9] made some simple changes in the way 
parent nodes are selected in the regular pyramid framework, which 
resulted in major improvements in their performance, including 
reduced shift variability and handling elongated objects. Instead of 
always comparing and selecting among the same four candidate parent 
nodes, each vertex at the current level selected the best node among its 
current parent, its current parent's neighbours, and the current parents 
of its neighbouring vertices at the same level. 4 connectivity 
neighbours were used in their implementation. 

This paper makes numerous changes to the LS algorithm [9]. The 
new algorithm proposed here is called CPLS (Co-Parent Link 
Shifting). We describe bellow our new algorithm in full, and outline 
changes made from LS [9]. The main improvement was adding a co­
parent as a candidate parent, which resulted in very fast region 
merging often at the first level of segmentation. This is due to the 
exponential progress of region merging in CPLS instead of linear 
progress in LS [9]. The parent selection rule was changed here from 
[3, 9]. In [3, 9], each pixel chooses the parent with the closest intensity 
to itself out of all candidate parents for its initial choice. The tie­
breaking rule in [3] is as follows. When two or more 'distances' are 
equally minimal, one is chosen at random (randomization is done 
when needed). However, if one of them was selected as a parent in the 
previous iteration, it is then not changed. We observed a slow merging 
process when this rule is employed. For example, two neighbouring 
pixels would not change and merge two neighbouring parents when all 
of them have the same intensities. We have modified this rule. 
Enhancements include changing the region similarity test to eliminate 
fixed thresholds (the new test used here is based on statistical 
difference between regions, derived from means, deviations, and 
receptive field sizes), and a change in the rules for parent selection. If 
two parent candidates do not differ too much from the child node, the 
one with the larger receptive field is selected. If the receptive fields 
are the same size, the parent with the higher assigned random value is 
chosen. In [3, 9], the initial pixel values of each child are used to 
define the initial intensities of their parents. This was changed here, so 
that the final pixel intensities of children at level L are used to create 
the initial pixel intensities of their parents at level L+ 1. Here we 
consider a 5x5 candidate parent grid centered on the current parent 
after half of the levels of the pyramid have been traversed (algorithm 
LS [9] uses only 3x3 parent grid at each level). These changes resulted 
in major improvements in the algorithm's performance, while 
preserving its simplicity. 

Experiments were conducted on both simple shapes, to validate 
the proposed methods, and on several real images. Evaluating 
segmentation quality in imagery is a subjective affair, and not easily 
done. "The ill-defined nature of the segmentation problem" [7] makes 
subjective judgment the generally adopted method (existing 
quantitative measurements are based on subjective formulas). In 
general, it is not clear what a 'good' segmentation is [7]. For this 
reason, no quantitative evaluation measure is applied to verify the 
results. The quality of the obtained segmentations appears visually 

satisfying for at least one level in each image. Our experiments 
compared the LS algorithm [9] with the new algorithm (CPLS) 
described here, and showed the superiority in the segmentation 
outcome. 

2. Pyramid Image Segmentation Algorithm 

Here we describe the proposed pyramid segmentation algorithm. 
The input to the algorithm is a grey scale, single channel image of 
dimensions 2Nx2N pixels, for N?2. Each pixel (at level 0) u has integer 
value I(u) in interval [0,255]. The output is the original image overlaid 
with the resultant segmentations at each level. In the pseudo code and 
discussion below, L is the level of the pyramid, L = 0, 1. . . ,  N. The 
bottom level (L = 0) is a matrix 2N x 2N pixels, representing the 
original image. Level L is matrix with 2N-L rows and columns, i. j = 0, 
1, 2 . . .  2N-L - 1. The top level L=N has one element. 

2.1 Creating the initial image pyramid at each level 

We describe and use the overlapping image pyramid structure 
from [3]. Initially, the children of node [i. j. L] are: [i'J ·.L-1]=[2i+e. 
2j+f L-1], for e,f E { -1,0, 1,2}. There are a maximum of 16 children. 
That is, each {2i-1. 2i. 2i+1. 2i+2} can be paired with each {2j-1. 2j. 
2j+1. 2j+2} to produce the coordinates of the 16 children. For i=j=O 
there are 9 children, and for i=O andj>O there are 12 children. There 
are also maximum index values 2N- +

J
_l for any child at level L-l 

which also restricts the number of children close to the maximum row 
and column values. For L=N there are four children of single node [0, 
0, N] on the top: [0, 0, N-l], [0, 1, N-l], [ 1, 0, N-l], [ 1, 1, N-l] since 
the minimum index is ° and the maximum is 1 at level N-1. Two 
neighbouring parents have overlapping initial children allocations. 
Conversely, each child [i. j. L] for L<N has 4 candidate parent nodes 

(if they exist) [i". J". L+J]=[(i+e)/2, (j+j)/2, L+l], for efE{-I,I} , 
where integer division is used (see Figure 1). Pixels at the edges of the 
image have fewer parents to choose from. The average intensity of all 
possible children is set as the initial intensity value I(v) of the parent v, 
for nodes at levels L>O. 

2.2 Testing similarity of two regions, unforced linking 

and the tie-breaking rule 

Our algorithm makes use of a procedure for comparing the 
similarity of two regions, namely receptive fields of a vertex u and its 
candidate parent v. These two vertices are similar (similar(u. v)=true) 
if their intensities are roughly the same. In LS [9], a simple threshold 
s= 30 for testing similarity was used. [9] also used a test for 
dissimilarity of two regions, to decide whether of not the best parent is 
an acceptable link, for the unforced linking option. A simple threshold 
based comparison against threshold value D = 70 was used in [9], and 
also here. The two functions are formally defined as follows. 

Function dissimilar(u. v) 
If II(u)-I(v)I > D then dissimilar=true else dissimilar=false . 

Function similar is defined via a statistical test between receptive 
field distributions u and v when possible. It resulted in better image 
segmentations, but when an analogous improvement was attempted 
for the function dissimilar there was no further improvement, so only 
the simple version was used. In case receptive fields exist with single 
pixels, and therefore variance values of 0, the simple intensity 
difference test was used with S = 15. Let n(u) denote the number of 
pixels in the receptive fields of u. Note that n(u) is used in calculating 
I(u) from intensity values of the children. For example, ifw j, W2 and 
W3 are children of u then I(u) = (I(wJ)n(wJ)+I(w2)n(w2)+ 
I(w3)n(w3))/n(u), n(u) = n(wJ) + n(w2) + n(w3) (the intensity of the 
parent is the weighted sum of intensities of its children). Let s(u) 
denote the variance of node u, that is, the variance of pixel intensities 
in its receptive field. 



Similar (u, v) { 
If n(u) = I or n(v) = I { 

If I/(u)-I(v)I < S Then similar=true Else similar=false } 
Else { 
If n(u) <30 or n(v) <30 

I/{u)-l{v� test = r.;=::o==:==��=��==== 
(n{u)s{u)+n{v)s{v)J(_l +_1 J 
n{u)+n{v)-2 n{u) n{v) 

Else 

test = 

Il{u) -/{v� 
(:�:� + :�:D 

If test < 2 then similar=true Else similar=false 

Each vertex u is initially assigned a random number r(u) in [0, I] 
which is never changed later on. Let w be a child node that compares 
parent candidates u and v, and let better(w, u, v) be one of u or v 
according to the comparison. The function is as follows. 

Function better(w, u, v) 
better=v; 
If similar(w,u) and similar(w, v) then 

{ if n(u»n(v) or (n(u)=n(v) and r(u»r(v)) then 
better=u} 
else if distance(w, u)<distance(w, v) or 

(distance(w, u) =distance(w, v) and n(u»n(v)) or 
(distance(w, u) =distance(w, v) and n(u)=n(v) and 
r(u»r(v)) 

then better=u; 

In our current implementation, distance(w, u) = II(w)-I(u)I. The 
function better normally selects the parent that is closer to the child 
node, based on the distance function, which is currently the difference 
in their pixel intensities. However, if they are both close (that is, 
similar) to the child node then the decision is made based on the size 
of their receptive fields, which is used as the secondary key in the 
comparison. If needed, the random numbers are used as ternary, tie 
breaking key for final arbitrage. 

2.3 Candidate Parents 

Among the candidate parents, each vertex at the level below selects 
the one which the closest to it, using the function better described 
above. For the first iteration, each vertex has up to four candidate 
parents, as per initial setup described by [3], and seen in Figure I (a). 
This fixed set of candidate parents has been changed (for further 
iterations) in our algorithm by a dynamic flexible set of candidate 
nodes that revolves around the current parent selection and the parent 
selection of neighbouring vertices at the same level. Suppose node w = 
[i, j, L] is currently linked to parent u = [i", j", L + I] in iteration t, 
which we will denote simply by pew) = u. The full notation would lead 
to p[i, j, LHt]=[i", j", L + IHt], and is convenient for easy listing of 
candidate parents. One set of candidate parents consists of the current 
parent and its 8 neighbours at the same level. Thus, in our notation, 
the candidate parents for the next iteration are: [i "+ e, j"+ f, L + 1], 

where e, f E {-I, 0, I} . This produces a maximum of 9 candidate 
parents, which is a 3x3 grid centered at the currently linked parent. 
We also added four additional parent candidates, by considering the 
current selection (from the previous iteration) of neighbouring vertices 
at the same level. This is illustrated in Figure I (b). For w=[i, j, L] and 
iteration t+ I, we also consider p{i+ I, j, LJ[t}, p[i-1, j, LHt], p[i, j+ I, 
LHt], and p[i, j- I, LHt] as parent candidates, if they exist. Both sets 

allow us to shift the parent further away in the next iteration, and 
possibly link the current child to a remote parent after the iterative 
process stabilizes (with no more changes in the selected parents). This 
change of parent selection nodes is directly responsible for the ability 
of our new algorithm to handle elongated objects. Note that we 
consider a 5x5 candidate parent grid centered on the current parent 
after half of the levels of the pyramid have been traversed by our 
algorithm. The segmentation quality was better than using 3x3 only or 
5x5 only at all levels. This change does not however adversely impact 
the execution speed of the program since there are fewer children at 
higher levels of the pyramid, and raising the number of candidate 
parents from 13 to 29 does not constitute a significant increase in run 
time of the algorithm. 

a) b) 

Figure I - Simple parent selection (a). 9 + 4 parent selection (b) 

We introduce here a concept called 'co-parent' identification in 
candidate parent selection. Its main purpose is to unite similar 
segments early on in the segmentation algorithm. Similarly, the co­
parent of parent u, at level L+ 1, denoted c(u), is a node at the same 
level as u, is similar to u, and at least one child at level L switched 
from u to c(u) at the end of a parent selection iteration. Even if several 
co-parent candidates are available, at most one co-parent is selected by 
picking the one with the largest receptive field (the random number is 
used to break the tie if needed). Let p(w) be the parent for node w at 
the end of the previous iteration, and let p '(w) be the selected 
(possibly new) parent ofw after comparing 13 or 29 candidate parents. 
The co-parent of u, denoted c(u), is calculated using the function find­
co-parent(u), who's pseudo code is listed below. 

Functionfind-co-parent(u) II returns c(u) 
c(u) =-1 I I co-parent of u does not initially exist 
For each child w at level L Do { II p(w)=u 

If p'(w) exists and p'(w) i-p(w) { 
If similar(u, p '(w)) { 

If c(u) =-1 or (similar(c(u), p '(w)) and 
((n(p'(w))>n(c(u)) or (n(p'(w))=n(c(u)) and 
r(p '(w))>r(c(u)))) 

then c(u)=p '(w) } }} 

Once the co-parents of each parent are found at level L, each child 
tests its next iteration parent against the co-parent of its current parent. 
The better one of these two parents is selected as the next iteration 
parent. 

2.4 Pyramid Segmentation 

Once the pointers to parents have been initialized, the segmentation 
procedure may begin. Parent selections are attained at a given level 
(starting at level 0, and working toward the top of the pyramid) after a 
maximum of T iterations, before the process advances to the next 
level. At level L, each pixel initially points to the closest among four 
parents from the initial pyramid structure. In the subsequent iterations, 
it points to the (temporary) parent which best suits it in layer L+ I, 
among the 9+4 or 25+4 candidate parents. This temporary parent is 
then compared to one more candidate, its co-parent, to yield the parent 



for the next iteration. The best parent is then tested for possible 
application of unforced linking based on dissimilarity. At the end of 
each iteration, the intensities of the parents in level L+ I are 
recalculated based on the average intensity of the pixels in its current 
receptive field. Since these averages are calculated from the averages 
of its children, they must be appropriately weighted (by the number of 
pixels in the receptive fields of the children). Similarly the size of the 
receptive field, and the variance of the pixel intensities, are 
recalculated. Children that refused the link due to unforced linking 
(unforced(w)=false) are not considered in this calculation; however 
such children w continue looking for a parent in the next iteration. In 
case a child node has no current candidate parents, and its parent from 
the previous iteration has an empty receptive field, the child takes over 
that empty parent and transfers its receptive field onto it. This cycle of 
choosing parents, recalculating intensities, and reassigning parents 
continues for T = 10 iterations per pair of layers. The algorithm can 
be, at the top level, described as follows. 

For levels L = 0 to N-1 Do { 
For each parent node u at level L+ I Do { 

Calculate initial parent intensity values, standard deviation, 
and receptive field size using 4x4 overlapping areas and 
default children. }; 

For each child node w in level L Do { 
choose initial parent p(w) among 4 default parents 
in level L + 1. 

If dissimilar(w, p(w)) Then unforced(w) = false 
Else unforced(w) = true. }; 

For iter = I to T Do { 
For each parent node v at level L+ 1 Do { 

calculate new values for I(v), n(v), s(v) based on 
children u with 

p(u)=v and unforced(u)=true }; 
For each child w at level L Do { 

select parent u among the 9+4 candidates (for L < (N-
1)/2, and 25+4 otherwise) using method better (w, u, 
v) comparing currently best parent u and a candidate v. 
p '(w ) = u 1* temporary parent } 

For each parent u at level L+ 1 Do { 
find co-parents c(u) of u using function find-eo-parent 
(u). } 

For each child w at level L Do { 
p(w)= better(w, c(p(w)), p'(w)) 1* Compare p'(w) with 
co-parent c(P(w)) of its parent p(w) from the previous 
iteration to yield new parent p(w) for the next iteration; 
If dissimilar(w, p(w)) Then unforced(w) = false 

Else unforced(w) = true. } 

Display segmentation for each level in pyramid. 

3. EXPERIMENTAL RESULTS 

The algorithm presented here was designed to solve the problem of 
correctly segmenting elongated shapes in the framework of regular 
pyramid segmentation. It however works on various types of everyday 
imagery: both colour and greyscale, although colour images are 
converted to greyscale before processing begins. We have tested our 
algorithm on images of size 256 x 256 pixels. The processing time per 
image is 6 seconds for the images on a single core of a Pentium 1.66 
GHz dual core machine, implemented in C# on the Windows XP 
operating system. Although it is relatively easy for us to judge 
whether or not a simple shape laid against a high contrast background 
is segmented properly, it is far more difficult to evaluate the precision 
of a segmentation of real imagery. The judgement of the quality of the 
segmentation is subjective. 

3.1 Segmentation Results 

The main benefit of the co-parent addition to the segmentation 
algorithm is that similar regions are joined much sooner in the 
pyramid segmentation structure. This principle is illustrated in Figure 
2, where a simple shape on a white background is segmented by both 
algorithms. We see that the regions are much more quickly merged by 
the addition of co-parent consideration in the CPLS algorithm. 

Figure 2 - LS (left), CPLS (right) 

A second example of this effect is seen on a sample image in Figure 
4 in the appendix. It shows an everyday image of a tree and the 
segmentation results for each level of the pyramid of the LS and CPLS 
algorithms. 

Our algorithm was also applied to some examples of everyday 
imagery found in the Berkeley Segmentation Dataset [6]. Their 
images were cropped slightly so that they could be the correct size 
required by our algorithm. We compared our co-parent link shifting 
(CPLS) algorithm to the link shifting (LS) segmentation algorithm 
proposed by [9]. We also used the algorithm proposed by [2], who 
also employ a type of hierarchical segmentation structure but take into 
considerations texture as well as colour. The final algorithm used for 
comparison include the mean shift segmentation algorithm [5] 
implemented by [4] and named EDISON. All of the tested approaches, 
(including our own) are relatively parameterless, or the parameters 
have been set once, and remain consistent throughout testing for all of 
the tested images. In the case of [2, 4], their default settings were used 
in the implementations found. We have also fixed parameter values in 
our own implementation, as described in the text. The test results of 
all the algorithms are seen in Figure 3. 



We show only the best level of segmentation of each pyramid 
since they best reflect the desired segmentation results for these 
images. The algorithms shown here have tendencies either to 
oversegment or undersegment images systematically, but sometimes 
perform adequately according to human observations. The algorithm 
of Christoudias et al. (CGM) [4] tends to oversegment images, and 
that of AGBB [2] tends to undersegment them. Our algorithm tends to 
oversegment areas that are textured, but that is to be expected since it 
is only pixel intensity based, and does not have any concept of texture. 
In the cases of coarsely textured images, AGBB [2] performs best. 
However, based on this selection of images from [6], the algorithms 
are fairly competitive. The CPLS algorithm better and more efficiently 
grouped similar regions at lower levels of segmentation, which is what 
it was designed to do. 

4. FUTURE WORK 

Since our CPLS method relies on grey scale intensities, it has a 
tendency of over-segmenting textured regions that appear 
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homogenous to human observers, yet distinguishably heterogeneous to 
the program. One general problem with our approach is the lack of 
consideration of texture in segmentation. This is best illustrated in the 
first example in Figure 3. The airplane is segmented correctly since it 
is homogeneous in colour, yet the clouds in the background are not 
understood to belong to the same segment since they demonstrate 
slight variability in colour. The selection of the best level of 
segmentation appears possible given a set of constraints or 
requirements, but is not the same for every picture, and eventually a 
human observer may be needed to select the best outcome for each 
picture, according to its further processing needs. 

The algorithm can be modified in a variety of ways. We have tested 
a variety of options for functions dissimilar and distance, involving 
standard deviations, but none of them improved the outcome. 
However, there are other possible definitions for these functions that 
could be tested. 

Figure 3 - Sample images and segmentations 

The algorithm can also be modified to enforce connectivity of 
receptive fields, either at the very end (applying a connected 

components algorithm to subdivide a region into connected pieces), or 
similarly splitting parents during the parent selection process. 



To improve the outcome of this segmentation algorithm, one would 
have to have at least some prior knowledge of the scene that is to be 
segmented. Such knowledge includes the minimum possible segment 
size, and possibly a range of pixel intensities within a region that 
could be considered homogenous. Other solutions may include 
considering more than just greyscale intensities of input data. In the 
current implementation, just the RGB layers are considered, and they 
are combined into just a single layer grey scale representation of the 
original image. By considering the Euclidean distance between two 
3D points in an RGB space instead of simply considering grey scale 
differences, more accurate parent selection could be achieved at the 
expense of increased computation time. Furthermore, the current 
structure can be manipulated to consider pictures that are not only of 
size 2"x2", but instead any size, including rectangular shapes. This size 
restriction was important in the original implementation of [3], but 
due to the modification of the parent selection process, it may be 
possible to eliminate this criterion. 

We have used and experimented with the overlapping image 
pyramid structure as originally proposed in [3]. This refers to the fact 
that parent vertices at level I have overlapping receptive fields. 
Antonisse [ 1] already argued that perhaps a non-overlapping structure 
could perform better. We left this modification for further study, so 
that we can first investigate the impact of a single major change 
proposed here, the use of flexible parent links. 

In this research, we attempted to find the best choices of parameters 
that will suit all images without adjusting them when a particular 
image is segmented. It is obviously possible to improve segmentation 
quality by manually adjusting parameter values and redoing 
segmentation until a plausible outcome is obtained for each picture. 
This would however defeat the purpose of an automated segmentation 
algorithm, and reduce it to human assisted segmentation. In our future 
research, we will also consider automatic selection of best parameter 
values for any given image. This can be achieved by using an 
independent measure of image segmentation quality. 
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